RF/Microwave Capacitors RF/Microwave Multilayer Capacitors (MLC) 100E Series Porcelain High RF Power Multilayer Capacitors

GENERAL DESCRIPTION

AVX, the industry leader, offers new improved ESR/ESL performance for the 100 E Series RF Capacitors. This high Q multilayer capacitor is ultra-stable under high RF current and voltage applications. High density porcelain construction provides a rugged, hermetic package. AVX offers an encapsulation option for applications requiring extended protection agains arc-over and corona.

FUNCTIONAL APPLICATIONS

- Bypass
- Coupling DC Blocking
- Tuning

CIRCUIT APPLICATIONS

- HF/RF Power Amplifiers
- Transmitters

Impedance Matching

- Antenna Tuning
- Plasma Chambers
- · Medical (MRI coils)

ENVIRONMENTAL CHARACTERISTICS

Thermal Shock	Mil-STD-202, Method 107, Condition A
Moisture Resistance	Mil-STD-202, Method 106
Low Voltage Humidity	Mil-STD-202, Method 103, condition A, with 1.5 VDC applied while subjected to an environment of 85°C with 85% relative humidity for 240 hours
Life Test	MIL-STD-202, Method 108, for 2000 hours, at 125°C. Voltage applied. 200% of WVDC for capacitors rated at 500 volts DC or less. 120% of WVDC for capacitors rated at 1250 volts DC or less. 100% of WVDC for capacitors rated above 1250 volts DC
Termination Styles	Available in various surface mount and leaded styles. See Mechanical Configurations
Terminal Strength	Terminations for chips and pellets withstand a pull of 5 lbs. min., 10 lbs. typical, for 5 seconds in direction perpendicular to the termination surface of the capacitor.

FEATURES

- Case E Size (.380" x .380")
- Capacitance Range 1pF to 5100pF
- Extended WVDC up to 7200 VDC
- Low ESR/ESL
- High Q
- High RF Power
- Ultra-Stable Performance
- High RF Current/Voltage
- Available with Encapsulation Option*
- * For leaded styles only

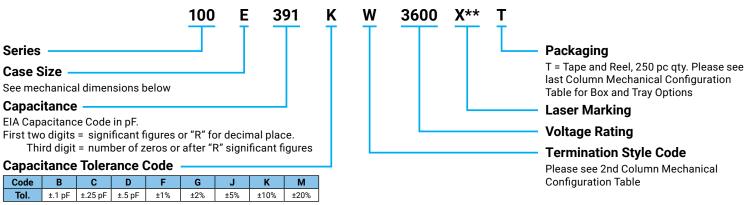
PACKAGING OPTIONS

Tape & Reel

Special Packaging Available

ELECTRICAL SPECIFICATIONS

Temperature Coefficient (TCC)	90 ± 20 PPM/°C					
Capacitance Range	1 pF to 5100 pF					
Operating Temperature	-55°C to +125°C*					
Quality Factor	Greater than 10,000 (1 pF to 1000 pF) @ 1 MHz. Greater than 10,000 (1100 pF to 5100 pF) @ 1 KHz.					
Insulation Resistance (IR)	1 pF to 5100 pF 10⁵ Megohms min. @ 25°C at 500 VDC 10⁴ Megohms min. @ 125°C at 500 VDC					
Working Voltage (WVDC)	See Capacitance Values table					
Dielectric Withstanding Voltage (DWV)	250% of WVDC for capacitors rated at 500 volts DC or less for 5 seconds. 150% of WVDC for capacitors rated at 1250 volts DC or less for 5 seconds. 120% of WVDC for capacitors rated above 1250 Volts DC for 5 seconds					
Aging Effects	None					
Piezoelectric Effects	None					
Capacitance Drift	\pm (0.02% or 0.02 pF), whichever is greater					
Retrace	Less than ±(0.02% or 0.02 pF), whichever is greater.					


CAPACITANCE VALUES

Cap.	Cap.	Tol.	Rat WV		Cap.	Cap.	Tol.	Ra ⁻ WV	ted 'DC	Cap.	Cap.	Tol.	Rated	WVDC	CAP. CODE	CAP. (pF)	TOL.	RATED	WVDC	
Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	Code	(pF)		STD.	EXT.	CODE	(рг)		STD.	EXT.	
1R0	1.0				5R6	5.6				470	47				391	390		3600		
1R1	1.1			ш	6R2	6.2			ш	510	51			TAGE	431	430				
1R2	1.2			AG	6R8	6.8	B, C,		AG	560	56			TA	471	470				
1R3	1.3			סרב	7R5	7.5	D		סרב	620	62				511	510				
1R4	1.4			Ň	8R2	8.2			Ň	680	68			7200	561	560		2500		
1R5	1.5			DED	9R1	9.1			DED	750	75			ម្ល	621	620				
1R6	1.6			EXTENDED VOLTAGE	100	10			EXTENDED VOLTAGE	820	82			EXTENDED	681	680				
1R7	1.7			НX	110	11			HX:	910	91			E	751	750				
1R8	1.8			ш	120	12			ш	101	100			ШŇ	821	820				
1R8	1.9					130	13				111	110	ГO		EXT.	911	910	ГO		
2R0	2.0	B, C,	3600	7200	150	15	3600	3600	7200	121	120	F, G, J, K,	3600		102	1000	F, G, J, K,		N/A	
2R1	2.1	D	3000	/200	160	16		3000	7200	131	130	, к, М	3000	5000	112	1100	, к, М	1000		
2R2	2.2				180	18	F 0			151	150			5000	122	1200	141	1000		
2R3	2.4			ш	200	20	F, G, J, K,		ш	161	160			VOLT.	152	1500				
2R4	2.7			AG	220	22	, к, М		AG	181	180			VOLI.	182	1800				
3R0	3.0			סרד	240	24			סדב	201	200				222	2200				
3R0	3.3			Ň	270	27			Ň	221	220				272	2700				
3R0	3.6			DEL	300	30			DEL	241	240				302	3000				
3R0	3.9			EXTENDED VOLTAGE	330	33			EXTENDED VOLTAGE	271	270			N/A	332	3300		500		
4R3	4.3			XT	360	36			XT	301	300				392	3900		300		
4R7	4.7			ш	390	39			ш	331	330				472	4700				
5R1	5.1				430	43				361	360				512	5100				

VRMS = 0.707 X WVDC

• SPECIAL VALUES, TOLERANCES, MATCHING, AND CAPACITOR ASSEMBLIES ARE AVAILABLE. • AVX'S CUSTOM POWER CAPACITOR ASSEMBLY CATALOG, LISTS ASSEMBLY OPTIONS. • DIFFERENT WORKING VOLTAGES ARE AVAILABLE • ENCAPSULATION OPTION AVAILABLE. PLEASE CONSULT FACTORY.

HOW TO ORDER

**Optional

The above part number refers to a 100 E Series (case size E) 390 pF capacitor, K tolerance (±10%), 3600 WVDC, with W termination (Tin / Lead, Solder Plated over Nickel Barrier), laser marking and Tape and Reel packaging.

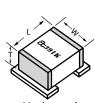
A KYOCERA GROUP COMPANY

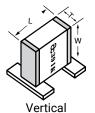
MECHANICAL CONFIGURATION

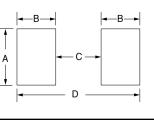
AVX Series	Series AVX Case Size Util		Outline					ead and Termination nensions and Material		
& Case Size	Term. Code	& Туре	W/T is a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type & Qty	Pkg Code
100E	w	E Solder Plate	$\begin{array}{c} Y \rightarrow \left \leftarrow & \downarrow \\ & & \downarrow \\ & & & \\ & & & \\ & \rightarrow \left L \right \leftarrow^{\uparrow} \rightarrow \left T \right \leftarrow \end{array}$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	Т J96
100E	Ρ	E Pellet	$\begin{array}{c c} Y \rightarrow \ \leftarrow & \downarrow \\ & & \\ & & \\ & & \\ & \rightarrow \\ & \downarrow \\ & \downarrow \\ & & \\ &$.380+.040010 (9.65+1.02-0.25)			.040	Heavy Tin/Lead Coated, over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	Т J96
100E	т	E Solderable Nickel	$\begin{array}{c} Y \rightarrow \left\ \leftarrow & \downarrow \\ & & \downarrow \\ & & & \\ & & & \\ & \rightarrow \left L \right \leftarrow^{\uparrow} \rightarrow \left T \right \leftarrow \end{array}$.380+.015010 (9.65+0.38-0.25)		.170 (4.32) max.	(1.02) max.	RoHS Compliant Tin Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	Т Ј96
100E	CA	E Gold Chip	$\begin{array}{c} Y \rightarrow \left \leftarrow & \downarrow \\ & & \downarrow \\ & & & \\ & & & \\ \rightarrow \left L \right \leftarrow \uparrow \rightarrow \right T \left \leftarrow \end{array}$.380+.015010 (9.65+0.38-0.25)	.380 ±.010			RoHS Compliant Gold Plated over Nickel Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
100E	MS	E Microstrip	$\begin{array}{c c} \downarrow & & T_L \\ \hline $		(9.65 ±0.25)			High Purity Silver Leads $L_{1} = .750 (19.05) min$	Tray, 16 or 32 pcs	J16 J32
100E	AR	E Axial Ribbon	$\begin{array}{c c} \downarrow & & T_L \\ \hline $.380+.035010	+ 035 - 010		$ \begin{array}{l} W_L = .350 \pm .010 \; (8.89 \pm 0.25) \\ T_L = .010 \pm .005 \; (0.25 \pm 0.13) \\ \text{Leads are Attached with} \\ \text{High Temperature Solder.} \end{array} $	Tray, 16 or 32 pcs	J16 J32	
100E	AW	E Non-Mag Axial Wire	→ L ← → L ← → L ← → T ←	(9.65+0.89-0.25)			N/A	Silver-plated Copper Leads Dia. = .032 \pm .002 (.813 \pm .051) L _L = 2.25 (57.2) min.	Box, 20 pcs	B20
100E	RW	E Non-Mag Radial Wire	$\rightarrow L_{L} \leftarrow \qquad \rightarrow L_{L} \leftarrow \qquad \rightarrow L_{L} \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow $					Silver-plated Copper Leads Dia. = .032 \pm .002 (.813 \pm .051) L _L = 1.0 (25.4) min.	Tray, 16 or 64 pcs	J16 J64

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

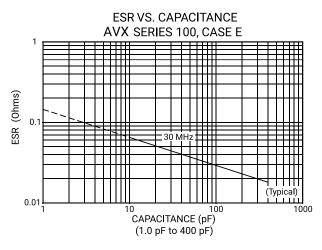
MECHANICAL CONFIGURATION

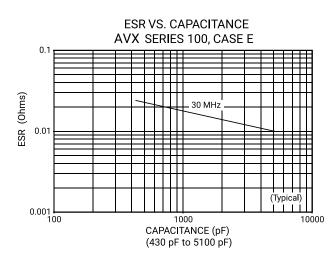

AVX Series	Series AVX Case Size		Outline	Body Dimensions inches (mm)				Lead and Termination mensions and Material		
& Case Size	Term. Code	& Type	W/T is a Termination Surface	Length (L)	Width (W)	Thickness (T)	Overlap (Y)	Materials	Pkg Type & Qty	Pkg Code
100E	WN	E Non-Mag Solder Plate	$\begin{array}{c} Y \rightarrow \left \leftarrow & \downarrow \\ & & \downarrow \\ & & & \\ & & & \\ & \rightarrow \left L \right \leftarrow^{\uparrow} \rightarrow \left T \right \leftarrow \end{array}$.380+.015010 (9.65+0.38-0.25)				Tin/Lead, Solder Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
100E	PN	E Non-Mag Pellet	$\begin{array}{c} Y \rightarrow \left \downarrow \\ & \downarrow \\ & \blacksquare \\ \rightarrow \right L \left \downarrow \uparrow \rightarrow \right T \right \leftarrow \end{array}$.380+.040010 (9.65+1.02-0.25)		.040 (1.02) max.		Heavy Tin/Lead Coated, over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
100E	TN	E Non-Mag Solderable Barrier	$\begin{array}{c c} Y \rightarrow & \downarrow \\ & & \downarrow \\ & & \\ \hline & & \\ \rightarrow & \downarrow \\ \downarrow & \downarrow \\ \downarrow & \\ \downarrow & \\ \hline & & \\ \downarrow & \\ \downarrow & \\ \hline & & \\ \downarrow & \downarrow$.380+.015010 (9.65+0.38-0.25)				RoHS Compliant Tin Plated over Non-Magnetic Barrier Termination	T&R, 250 pcs Tray, 96 pcs	T J96
100E	MN	E Non-Mag Microstrip	$\begin{array}{c c} \downarrow & & & \\ \hline & \downarrow & & \\ \hline & \hline & \\ \hline & \hline & \\ \hline & \hline & \\ \hline \\ \hline$.380 ±.010 (9.65 ±0.25)			$\begin{array}{c} \mbox{High Purity} \\ \mbox{Silver Leads} \\ \mbox{L}_{\tiny L} = .750 \ (19.05) \ min \\ \mbox{W}_{\tiny L} = .350 \ \pm .010 \ (8.89 \ \pm 0.25) \\ \mbox{T}_{\tiny L} = .010 \ \pm .005 \ (0.25 \ \pm 0.13) \\ \mbox{Leads are Attached with} \\ \mbox{High Temperature Solder.} \end{array}$	Tray, 16 or 32 pcs	J16 J32
100E	AN	E Non-Mag Axial Ribbon	$\begin{array}{c c} \downarrow & & T_L \\ \hline $.380+.035010					Tray, 16 or 32 pcs	J16 J32
100E	BN	E Non-Mag Axial Wire	$\rightarrow L \leftarrow \downarrow$ $\psi \bullet$ $\rightarrow L \leftarrow \uparrow \downarrow$	(9.65+0.89-0.25)				N/A	Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) L_{L} = 2.25 (57.2) min.	Box, 20 pcs
100E	RN	E Non-Mag Radial Wire	→ L +					Silver-plated Copper Leads Dia. = .032 ±.002 (.813 ±.051) $L_{L} = 1.0 (25.4)$ min.	Tray, 16 or 64 pcs	J16 J64

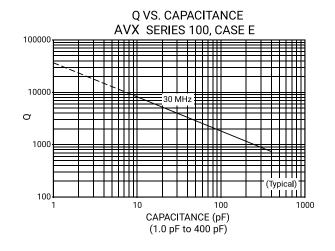

Custom lead styles and lengths are available; consult factory. All leads are high purity silver attached with high temperature solder and are RoHS compliant.

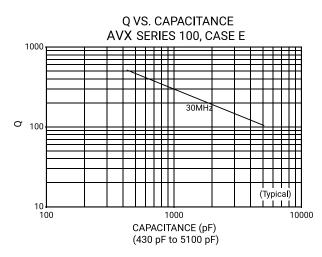


SUGGESTED MOUNTING PAD DIMENSIONS

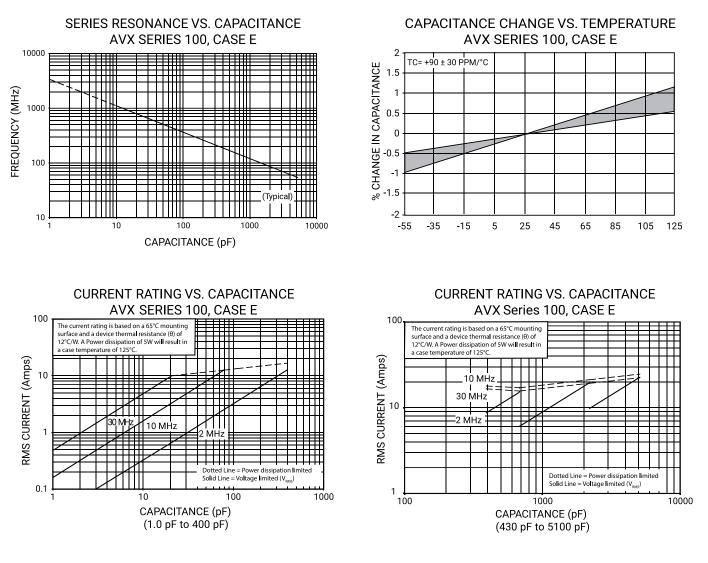

Horizontal Vertical Electrode Orientation Electrode Orientation

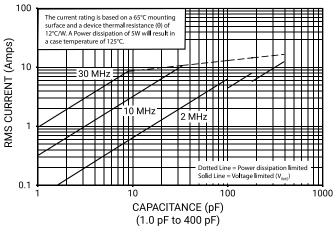



	Case E								
Mount Type	Pad Size	A Min.	B Min.	C Min.	D Min.				
Vertical Mount	Normal	.185	.050	.325	.425				
	High Density	.165	.030	.325	.385				
Horizontal Mount	Normal	.405	.050	.325	.425				
	High Density	.383	.030	.325	.385				


Dimensions are in inches.

PERFORMANCE DATA




The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

PERFORMANCE DATA

CURRENT RATING VS. CAPACITANCE AVX SERIES 100, CASE E, EXTENDED VOLTAGE

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.